

PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, JAN - 2023
THERMODYNAMICS
(AME Branch)
Max. Marks: 60
Time: 3 hours
Note: Question Paper consists of Two parts (Part-A and Part-B)
PART-A
Answer all the questions in Part-A (5X2=10M)

Q.No.		Questions	Marks	CO	KL
1	a)	Explain the concept of macroscopic and microscopic viewpoints applied to the study of thermodynamics.	$[2 \mathrm{M}]$	1	
	b)	Define (a) dryness fraction, and (b) degree of superheat.	$[2 \mathrm{M}]$	2	
	c)	State the Second Law of Thermodynamics \& prove $(\mathrm{COP})_{\mathrm{HP}}=(\mathrm{COP})_{\text {Ref }}+1$	$[2 \mathrm{M}]$	3	
	d)	Why Carnot cycle is not practical for a steam power plant?	$[2 \mathrm{M}]$	4	
	e)	Write briefly about the Dalton's Law of partial pressures.	$[2 \mathrm{M}]$	5	

PART-B

Answer One Question from each UNIT (5X10=50M)

Q.No.		Questions	Marks	CO	KL
UNIT-I					
2.	a)	During a certain process, the specific heat capacity of a system is given by C $=(0.4+0.004 \mathrm{~T}) \mathrm{k} . \mathrm{J} / \mathrm{kg}^{\circ} \mathrm{C}$. Find the heat transferred and mean specific heat of gas, when the temperature changes from $25^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The mass of the system is 5 kg .	[5M]	1	
	b)	Write about concept of continuum and explain its importance.	[5M]	1	
OR					
3.	a)	In a piston-cylinder arrangement, the pressure is inversely proportional to the square of the volume. The initial pressure is 10 bar in the cylinder and the initial volume is 0.1 m 3 . The volume is now changed so that the final pressure is 2 bar. Find the work done in kJ .	[5M]	1	
	b)	Explain about the various mechanisms of energy transfer.	[5M]	1	
UNIT-II					
4.		Explain p-V, T-v, T-s, diagrams and p-v-T surface of pure substance.	[10M]	2	
OR					
5.		Identify the type of steam in the following three cases using steam tables and giving necessary calculations to support your claim. (a) 2 kg of steam at 8 bar with an enthalpy of 5538.0 kJ at a temperature of $170.4^{\circ} \mathrm{C}$ (b) 1 kg of steam at 2550 kPa occupies a volume of $0.2742 \mathrm{~m}^{3}$. Also, find the steam temperature. (c) 1 kg of steam at 60 bar with an enthalpy of 2470.73 kJ .	[10M]	2	
UNIT-III					
6.	a)	State the Carnot theorems and prove it.	[5M]	3	
	b)	Write a shot note on Clausius inequality and concept of entropy.	[5M]	3	
		OR			

7.		300 kg of fish at $5^{\circ} \mathrm{C}$ is to be frozen at $-2^{\circ} \mathrm{C}$. The specific heat of fish above freezing point is $4.182 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ and the latent heat of fusion is $234.5 \mathrm{~kJ} / \mathrm{kg}$. Freezing point is $-2^{\circ} \mathrm{C}$. A refrigerator is used for this purpose which rejects heat in the ambient at $40^{\circ} \mathrm{C}$. The COP of the refrigerator is 60% of the COP of a Carnot refrigerator operating between the same temperature limits. How much power must be required to remove the heat in 10 hours?	[10M]	3		
UNIT-IV						
8.		Explain the effects of operating variables on the Rankine cycle with the help of $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{s}$ diagrams wherever necessary.	[10M]	4		
OR						
9.		In a steam power plant operating on an ideal Rankine cycle, the steam enters the turbine at 3 MPa and $400^{\circ} \mathrm{C}$ and it is exhausted at 10 kPa . Determine (a) Thermal efficiency, (b) Thermal efficiency if the steam is superheated to $500^{\circ} \mathrm{C}$ at 3 MPa , before it enters the turbine	[6M]	4		
UNIT-V						
10.	a)	State the Dalton's and Amagat's Law and discuss their importance.	[5M]	5		
	b)	Write about compressibility factor and its significance in thermodynamics.	[5M]	5		
OR						
11.		A vessel of volume $0.4 \mathrm{~m}^{3}$ contains 0.45 kg of carbon monoxide and 1 kg air, at $15^{\circ} \mathrm{C}$. Calculate the partial pressure of each constituent and the total pressure in the vessel. The air contains 23.3% oxygen and 76.7% nitrogen by mass. Take the molar masses of carbon monoxide, oxygen and nitrogen as 28,32 and $28 \mathrm{~kg} / \mathrm{k}$ mol, respectively.	[10M]	5		

